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In recent years, a considerable number of pieces of work on the study of the properties of 2 material as
a function of the deformation rate have been devoted to the development of the microscopic approach to the
description of the shock behavior of materials (see, for example, the review [1]). This approach is based on
the use of the dynamic properties of the dislocations in writing the determining equations. The closed system
of equations used for the description of elastoplastic waves in the case of monaxial loading has the form

] -+ Oy = O; (1)
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where u is the rate of displacement of the particles of the material; ¢ is the total deformation in the direction
of the propagation of the wave; o is the stress; p is the density of the material; c is the speed of sound (adia-
batic); and F is the relaxation function, whose form determines the dependence of the rate of plastic deforma-
tion of the material on the density of the mobile dislocations and their velocity. The subscripts t and x denote
differentiation with respect to the time and the longitudinal coordinate, respectively. In the case of a poly-
crystalline material the relaxation function has the form {2]
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where Nj is the initial density of the dislocations; H is the hardening(constant; vy is the velocity of the trans-
verse sound waves; « is the multiplication factor of the dislocations; b is the Burgers vector; 7, is the char-
acteristic stagnation stress; and A andp are Lamé coefficients.

Solution of the system (1)-(4) by the method of characteristics allows of aquantitative analysis of the
effect of the parameters of the dislocation structure on the decay of the elastic precursor of the wave {2]. A
number of communications [3-6] report a numerical solution of the system (1)-(4) by the method of finite
differences using the Neumann—Richtmayer artificial vigcosity. Under these circumstances, the qualitative
and quantitative effect of the parameters of the dislocation structure on the whole profile of an elastoplastic
wave was brought out.

A constructive method, making possible an unambiguous determination of the kinetic parameters of the
dislocation structure — Ny, H, @, and T, — on the basis of a quasi-steady-state dependence ¢ (¢), is developed
in [6]. Values of the parameters obtained by successive approximations, by substitution into Eq. (1)-(3), gave
rather close agreement between theoretical curves of the decay of an elastic precursor and the experimental
results of [7], while the monotonic character of the dependence of the values of these parameters on the grain
size is evidence of the correctness of the model.

In the present article, a somewhat different method is proposed for determining the kinetic parameters
of the dislocation structure; it is based on an analytical solution of the system (1)-(3). As will be shown below,
this solution yields an analytical connection between the steady-state front of an elastoplastic wave and the
kinetic parameters for several types of relaxation functions F.

We first carry out the solution for the case of a polycrystalline material, taking the function of the
relaxation in the form (4). As a new variable, we take the plastic shear deformation, which is connected with
the normal stress and deformations by the relationship
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y=—Fdio— (426l )

Here the determining equation (3) can be converted to the form

| s (6)
ve = AMy + 1) exp |~ :—1—27")

where A=bvy Ng; B=H/i; M=a/N;; and 7=7o/u.

From expression (6), the total (elastic plus plastic) deformation in the direction of propagation of the
wave is equal to

T+ By
€= — [, /Ay + D] T v (7

Equations (1)-(2) can be reduced to one equation of the second order in o and ¢;
Oxx — P&y = 0, (8)
which, taking account of (5), assumes the form
~(B/3)vex + peleyy — pey = 0.

Substituting the deformation £ from expression (7) into this equation, we obtain an equation of the third order
in partial derivatives with respect to the plastic shear deformation:
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where ye = V/ot; v, = 8y/82; v, = 0%/8t8z; . .. This equation can be written in a more graphic form if the
following notation is introduced:
8 = Inly/AMy + Dl 8¢ = vea/ve — My /(My + 1), 85 = Veulvs — My /(My +- 1),
8g¢ = Vete/ Ve — VR/VE — My My + 1) + M2/ (My + 1)2.

Using expressions (10}, Eq. (9) is transformed in the following mauner:

(10)
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We shall seek the solution of thig equation in the form y=£(x ~at), that is

My 4+ 1 = Myexp (—kz + o). (12)
Then, as follows from expressions (10},
6t=6x=5”=6xx=0
and substitution of (12) into Eq. (11), taking account of (10), leads to the equation
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Fig. 1
TABLE 1
Elastoplast, wave param. Param, of struct, from plast, front [Param. of struct, from
) elast, precur,
Material cps c, o O Nos a, H, ’No. T, o
mm/ | mm/ kbar | kbar cm™? cm~? kbar em=? kbar g
gsec |usec 3
Armco iron:
Impact No. 5694 | 465 6,0 37,4 6,8 1,02.10¢ 1,1.10% 90 2.108 19,8 (2]
Impact No, 5650 | 5,05 8,0 87,5 6,8 0,7.108 0,42100 | 410 | 2.108 19,8 . [2]
N_aCl 3,36 4,78 2,5 0,21 1,9.10° 1,13.1010 19,7 1,5-10° 0,422 191
LiF 4,95 6,63 29,3 3,6 1,12:10° 1,28.10% 100 1,5-10° 10 | [0}
whence
AR 7R S SR L
€ 3 pc? 9 _ B ) (14)
In—2_
oy
Here the shear deformation can be written in the form
= (M, exp [(AM &) — kz] — 1}, (15)

vwhere 6 and k are determined by expressions (13) and (14), respectively. The preexponential factor M, can be
determined from the initial conditions ¥=0 for x=0 and t=0, whence My=1.

The total deformation in the direction of propagation of the wave and the normal shear can be written i

the form .

2 B/
M

o= ._.g_pcz _|_317[962 (2_ %—) —-%p] [exp (wt — kz) — 1]. (1n

[exp (ot — kz) — 1]; (16)

The sense of the expressions obtained can be brought out from Fig. 1, which shows the profile of an elasto-
plastic wave as a function of the longitudinal coordinate x. The stress at the plastic front of the wave starting
from the coordinate x =cpt falls exponentially from a value of o, equal to the initial stress applied at the
boundary x =0 at the moment t=0, to some constant value ¢, determined by the parameters of the material.
The coordinate of the start of the fall of the plastic front is displaced in the positive direction of the X axis
at the rate cp. Thus, the value of p determines the velocity of the plastic front. The stress at the plastic
front is equal to

6 = Gy (09 — O){ exp {—k(x —cpt)] — 1} for 2z = cpt. (18)

o =gy for z<cpt.

Conditions (18) determine the rate of fall of the stress at the plastic front:

Gy = — ;;- pec?; (19}

o= AM exp (— U—To pcz). (20)

382



4§L N 5575%\ 1,55/bj5_ L !

™
O
V' d

0 6z ¢4 6 (8x,cm
Fig. 2

For a known velocity of the plastic front cp, expression (16), taking account of (19), determines the value of
the coefficient of deformation hardening:

B:g_pcz(.s__”_ 1 __2>_ (21)

Finally, a comparison of expressions (18) and (19) yields a connection between the cocfficient of multiplication
of the dislocations and the stress ¢y, at the minimum of the profile of the clastoplastic wave:

M =5y (0, — o) (-2 —~ 1)- (22)
»

Thus, if the velocity of the plastic front cp, the initial stress o, the stress o m, the initial density of
the dislocations Ny, and the stagnation constant Ty are known, then expressions (20)-(22) uniquely determine
the remaining parameters of the dislocation structure of the material: the multiplication coefficient of the
dislocations e =NgM, the coefficicnt of hardening of the material H=pB, the increment of the growth of the
plastic front of the wave

o= bv*aexp(— %o oc2), (23)

ugy *
and the wave number

k= (x)/Cp.

The values of the characteristic stagnation stress 7, and the initial density of the mobile dislocations can be,
as is well known [2], determined from data on the decay of the elastic precursor, using the method of char-
acteristics. The parameters o'y, o'y, and cp can be determined from experiments on shock loading. Thus,
using expressions (19)-(23), we can determine the averaged characteristics of the rate of multiplication of
the dislocations and the hardening coefficient of the material.

However, as is noted in a number of communications [8-10], the valuc of the initial dengity of the dis-
locationg Ny, flowing out of data on the decay of the elastic precursor, is found to be 2-3 orders of magnitude
greater than that observed from etching pits. In view of this, it is reasonable to determine Nj from an
analytical solution of (18), selecting the parameters 7, Ny, @, and H in such a way that the calculated plastic
front of the wave will coincide with the experimental. An analysis of the wave profiles in the experiments of
[7] gives the values of the parameters shown in Table 1. Here the value of the characteristic stagnation stress
T, was taken equal to 19.8 kbar, and the dynamic equilibrium amplitude of the shock wave is determined from
the asymptotic velocity of the free surface ufg =0.028 mm/ysec, using the Hugoniot—Rankine relationship
om=(1/2)pcugs. As can be seen from the data given in the table, the initial density of the dislocations, deter-
mined from the condition of the coincidence of the plastic fronts, corresponds to values obtained from analysis
of the data of [2] on the decay of the elastic precursor.

To clarify which dependence between ¢ and & corregponds to the analytical solution (17) obtained above,
we return again to the determining equation (6). As has been noted above, a solution of the system (1)-(4) ig
possible only for § =const, where it becomes linear. A comparison of expressions (6) and (10) gives 6=
—(7+ By)/ (¢ — 2y). Substituting ¢ into this expression by the replacement of ¥ in accordance with formula (5),
we obtain the sought relationship in the form

G~ 9638-%%[—2— w—2p (e —65)}- (24)
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Denoting the hydrostatic velocity in the medium by e =[{2~44(n/p N2, expression (24) can be rewritten
in the form

o= pcfe 5P (cf—cf). (25)
Expressions (24) and (25) give a linear connection between ¢ and €. The slope of the plastic part of this

dependence is determined by the rate of propagation of the plastic front cp, which is present as a parameter

in expressions (24) and (25). Since the velocity of the plastic front is less than the acoustical velocity, the

slope of the plastic part of the dependence c—¢ is less than the slope of its elastic part, determined, as is

well known, by the relationship 0 =pcle. The least slope of the plastic part of the dependence 6—¢ occurs

with equality of the plastic front and the hydrostatic velocity in the medium under consideration. Thus, the

analytical solution of the system (1)-(4) obtained corresponds to the well-known rigidly plastic scheme,

whose parameters are determined by the parameters of the dislocation structure of the material, in accordance

with expression (24).

By an appropriate selection of (12), out of the whole class of solutions of the system (11), a solution is
obtained satisfying the linear dependence o—¢ in the plastic region of the dynamic stress diagram. A rigidly
plastic scheme with hardening cannot take account of the dispersion of the wave parameters determining the
profile of the plastic front. This means that the analytical solution obtained describes only fully established
plastic fronts, the stress at any given point of which remains unchanged during the process of their propaga-
tion, while the fronts themselves, as a whole, are displaced with a velocity c,, less than the velocity of the
elastic precursor. The possibility of the existence of fully egtablished plastic fronts has been repeatedly
pointed out in the literature. Specifically, in [11], the conditions for the appearance of such fronts in aluminum
are determined theoretically and experimentally.

The method for the analytical description of plastic fronts, developed in the present article, is essentially
based on the replacement of a nonlinear dependence o—¢& by a linear rigidly plastic dependence with hardening,
whose inclination to the axis of abscissas is determined by the velocity of the plastic front. The value of the
initial density of the dislocations, calculated from an analysis of the experiments of [7], is very close to the
analytical value obtained on the basis of data on the decay of the elastic precursor. As can be seen from the
calculated data given, from the profile of the plastic front,additional information can be obtained on the
hardening of the material and the multiplication properties of the dislocation structure. The method has
considerable advantages also in the sense that all the needed information on the averaged parameters of the
dislocation structure can be extracted from one experimentally recorded profile of an elastoplastic wave,
while, to plot the curve of the decay of the elastic precursor, a series of impacts is required for different
thicknesses of the target.

Simultaneously, the system (1)-(4) was solved numerically, with different values of the parameters of
the dislocation structure entering into the equations. The solution was obtained by the method of finite differ-
ences, with the introduction of the Neumann—Richtmayer artificial viscosity. Figure 2a-c shows profiles
of the stress in the wave, calculated for two fixed moments: t;=5° 1077 sec and t,=1.5- 1078 sec; T7,=19.6
kbar, H=4.1 kbar [a) Np=108 cm™%, @=7+101 cm™%; b) Ny=10% em™, @=7-109 ecm™%; c) Ny=10% em™, ;=
3-109 cm™2, @,=3-10% cm™2]. It can be seen that the most significant effect on the form of the elastoplastic
wave is that of the initial density of the mobile dislocations. For Nj= 10% cm™2, a considerable decay of the
elastic precursor, corresponding to the experiments of [7], can be attained only with the introduction of an
anomalously large multiplication coefficient of the dislocations @=3- 102 ¢m™2, The rather high values of the
multiplication coefficient of the dislocations, obtained from numerical calculations, along with the extremely
high density of the dislocations obtained independently from an analysis of the decay of the elastic precursor
[2] and the analytical approximation of the data of the article, do not contradict the models developed in recent
years for the heterogeneous multiplication of dislocations in the elastic precursor of a wave. In accordance
with this model, a reasonable agreement of the rate of decay of the precursor with experiment is obtained
with the introduction into the model of additional mechanisms (of an explosive character) of the generation of
dislocations, responsible for the rapid relaxation of the stress and for the fall in the elastic precursor to the
dynamically equilibrium value. The mechanism of this multiplication still remains unclear, although there
are a number of data on the effect of the impurity composition of the material on it [10, 12].

The above golution of the system (1)-{3) describes the shock~wave behavior of polycrystalline materials.
Experimental data obtained with the shock-wave loading of single crystals are more convenient for an analysis
of the dislocation structure. In the case of single crystals, the form of the relaxation function is determined
by the orientation of the crystal with respect to the direction of propagation of the wave. For different types of
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crystalline systems and directions of the impact, forms of the relaxation functions were obtained in {8].
Taking account of the data of this paper, in the general case the determining equation (3) can be written in the
form

oy — pc’e, = —Rbv, (N, + alpcte — ol} exp {—It, + Hlpc’e—0)1/g0},

where the coefficients R and q are determined by the type of erystal and the direction of propagation of the
wave (see [8]). For shear deformation, this equation agssumes the form

ve = AMy -+ 1) exp [—(v, + Hy)/gal,
whence
0 = —(1y + Hy)qIn [y,/AMy 4+ D)1 (26)

Expressing the total deformation in terms of the stress and the shear deformation, in accordance with formula
(5), Eq. {(8) can be converted to the form
Oxx ™ (1/62)(Gtt - R‘Vtt) = 0.

Finally, substituting here the value of ¢ from expression (26), and again postulating a solution in the form
(12), taking account of (10) we obtain the following dispersion equation:

9/ _ Ry, @
k~—?‘/ '].""'FIDAM,

in which the plastic shear deformation and the stress in the wave are determined by the expressions
7 = (/M) {exp [kleyt — )] — 1},
o = —1,/q8 — (I[/g8M) {exp lk(cpt — z)] — 1}.
From the moment of time t1=x/cp (see Fig. 1), the stress remains constant and equal to oy for all values of
the coordinate 0< x=x;. Thus, from the condition 0=0; at t=t, we have
Op. = —T/q8, ® == AM exp (~1o/q0)-

From this expression, specifically, it can be seen that the rate of growth of the plastic front does not depend
on the type of crystal lattice, but is determined only by the parameters of the dislocation structure of the
material. TFor a known velocity of the plastic front, the hardening coefficient of the material is determined as

Ty R
T o 2/0% _. 1
[ /cp 1

The coefficient of multiplication of the dislocations o= NyM can be determined from the following condition
(as x—>%, 0 ~0 ), determining the stress behind the elastic precursor:

M~ Ii/( - 1) (G0 — G ).
[9
P
The expressions obtained were used for an analysis of experimental data on the shock-wave loading of single
crystals of table salt [9] and lithium fluoride [10]. The results of a calculation for a direction of the impact

[100] are given in Table 1.

Thus, both for polycrystalline materials and for single crystals, the expressions obtained allow of an
unambiguous determination of the averaged parameters of the dislocation structure, within the framework of
the Gilman ~Johnson model.

The authors wish to express their thanks to A. N. Orlov and V. L. Vladimirov for their useful evaluations
of the work, and to L. A. Antonova for making the numerical caleulations.
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EQUATIONS OF ELASTOPLASTIC DEFORMATION
FOR ARBITRARY VALUES OF THE ROTATIONS
AND DEFORMATIONS

G. V. Ivanov UDC 539.3

In many solids, for example, in metallic bodies, for arbitrary values of the rotations and deformations
of the elements of the body, the components of the deviator of the elastic deformations are quantities on the
order of the ratio of the shear strength to the Young modulus and, consequently, are small in comparison with
unity. Below, on the basis of the results of [1], equations are formulated for the isotropic elastic and ideal
elastoplastic deformation of such bodies. A comparison is made between the equations obtained and known
equations [2-4]. For simplicity in writing the equations, only adiabatic deformations are discussed below.

1. Equations of Elastic Deformation in the Case of Small

Components of the Deviator of the Deformations

We denote by 9,, 3{a, 8=1, 2, 3) the basis vectors of a Lagrangian system of coordinates, generated
by the Cartesian system of coordinates x! with the basis vectors k; =k' (i=1, 2, 3).

Let 7.69°9% = 7%363) = vi;k'k! be some symmetrical tensor. Differentiating the formulas for the
connection between the components Yq¢. YV°* and the components Yij» we find
(d?aﬁ/dt)aaas = (D\’i.i/Dt + Vsilsi + Vs-iesj)kikj, (1.1)
(d\%ﬂ/dt)aaaﬁ = (D'Yi.i/Dt — Vsifsi — Vsiesj)kikjv
where ejj = (1/2)(8u; fox] + auj/axi); uj are the components of the velocity vector; Dy;j/Dt is a Jaumann deriva-
tive [5]
Dvyy/Dt = dyysldt + Vri®r; + VriOnss
wy; = (1/2)(0u/oxi — du;/oxt).
From (1.1), specifically, it follows that
DEij/Dt + Epilry + Ejplpi = €ij, i (1-2)
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